대형 언어 모델(LLM)은 자연어 처리 분야에서 중요한 혁신을 이루었지만, 여전히 특정 도메인에서는 한계를 보이고 있습니다. 특히, 도메인별로 요구되는 세부적인 지식이나 전문성을 반영하지 못해 정확하지 않은 출력을 생성하거나, 신뢰성에 문제가 발생하는 경우가 있습니다. 이러한 한계를 극복하기 위한 한 가지 방법으로 도메인 특화 LLM을 개발하는 것이 주목받고 있습니다.일반 LLM: 한계를 해결하는 접근법LLM의 한계를 해결하는 한 가지 방법은 특정 도메인에 맞는 데이터로 모델을 **미세 조정(finetuning)**하는 것입니다. 미세 조정은 대형 언어 모델이 학습한 범용적인 지식 위에, 특정 분야에서 자주 등장하는 용어나 표현, 문맥 등을 이해할 수 있도록 추가 학습하는 과정을 말합니다. 이를 통해 관..