ai 16

AI의 의학도전 (20)-데이터의 연금술: AI는 어떻게 고품질 합성데이터를 만들어내는가

LLM 기반 Synthetic Data 연구https://arxiv.org/html/2406.15126v1 On LLMs-Driven Synthetic Data Generation, Curation, and Evaluation: A SurveyOn LLMs-Driven Synthetic Data Generation, Curation, and Evaluation: A Survey Lin Long1, Rui Wang1, Ruixuan Xiao1 Junbo Zhao1, Xiao Ding2, Gang Chen1, Haobo Wang1 1Zhejiang University, China  2Harbin Institute of Technology, China Correspondence: wanghaobarxiv.or..

트랜스포머 모델로 이미지 분석하기 - 최신 기술 트렌드 탐구

이미지 분석과 ChatGPT 4.0, Claude 3.5 Sonnet: 최신 트렌드와 접근법이미지 분석 기술은 빠르게 진화하고 있으며, 최근 몇 년 동안 트랜스포머 모델을 활용한 새로운 접근법이 주목받고 있습니다. 특히 ChatGPT 4.0과 Claude 3.5 Sonnet은 이미지 처리에서 전통적인 방법을 넘어서는 혁신적인 방식으로 주목받고 있습니다. 여기서는 이미지를 패치로 분할하고 임베딩을 생성하는 접근법이 최신 모델들에서 어떻게 활용되는지에 대해 간단히 살펴보겠습니다.1. 이미지 분석의 기본 개념: 패치 분할과 임베딩이미지를 분석할 때 흔히 사용되는 기법 중 하나는 이미지를 여러 개의 패치로 분할(segmentation)한 후 임베딩(embedding) 을 생성하는 것입니다. 이는 비전 트랜스포머..

AI의 의학도전 (11) - "전문의급 실력" GPT-4의 안과 진단 능력 첫 검증: 422개 임상 사례 분석 결과

1차 원고 작성: 2024-11-21오늘은 "Assessing the medical reasoning skills of GPT-4 in complex ophthalmology cases"라는 논문에 대해 내용을 정리하고자 합니다. 이 연구는 GPT-4의 복잡한 안과 임상 사례에 대한 의료 추론 능력을 평가한 중요한 논문입니다.출처: JAMA Ophthalmology (2024)https://bjo.bmj.com/content/108/10/1398  Assessing the medical reasoning skills of GPT-4 in complex ophthalmology casesBackground/aims This study assesses the proficiency of Generative P..

의학 2024.11.21

AI의 의학 도전 (9) NEJM case 평가를 통한 다중 모달 AI의 의료 진단

1차 원고 작성: 2024-10-25 오늘은 "Evaluating multimodal AI in medical diagnostics"라는 논문에 대해 내용을 정리하고자 합니다. 이 연구는 다중 모달 AI 모델이 임상 진단에서 보이는 정확도와 반응성을 평가한 중요한 논문입니다. 출처: npj Digital Medicine (2024) 7: 205. https://doi.org/10.1038/s41591-024-02780-7 이 연구에서는 NEJM Image Challenge 질문에 대한 AI 모델의 응답을 인간 집단 지성과 비교하여 AI의 잠재력과 현재의 한계를 조명했습니다.  이 연구의 주요 내용은 다음과 같습니다:Anthropic의 Claude 3 모델이 가장 높은 정확도를 기록했으며, 이는 AI 모델..

카테고리 없음 2024.10.25

AI의 의학 도전 (6) : LLM의 임상 의사결정 한계 극복 - 안전한 의료 AI 개발을 위한 새로운 프레임워크

1차 원고 작성: 2024-10-17 오늘은 "Evaluation and mitigation of the limitations of large language models in clinical decision-making"이라는 논문에 대해 내용을 정리하고자 합니다. 이 연구는 대규모 언어 모델(LLM)을 임상 의사 결정에 활용할 때의 한계점을 평가하고 개선 방안을 모색한 중요한 논문입니다. 출처: Nature Medicine (2024) 30: 2613–2622. https://doi.org/10.1038/s41591-024-02780-7 대규모 언어 모델(LLM)은 의료 면허 시험에서 우수한 성과를 보이며 임상 의사 결정 분야에서 큰 잠재력을 보여주고 있습니다. 그러나 실제 임상 환경에서 필요한 많은..

카테고리 없음 2024.10.17

AI의 의학 도전: AI를 이용한 의사결정시스템(3) - AML 약물 반응예측

1차 원고 작성: 2024-09-22오늘은 "Prediction model for drug response of acute myeloid leukemia patients"라는 논문을 소개하고자 합니다. 이 연구는 급성 골수성 백혈병(AML) 환자의 약물 반응을 예측하기 위한 새로운 앙상블 기반 AI 모델인 MDREAM을 개발하고 검증했습니다. 출처: npj Precision Oncology (2023). https://doi.org/10.1038/s41698-023-00373-0 이 연구는 급성 골수성 백혈병(AML) 환자의 약물 반응을 예측하기 위한 MDREAM이라는 새로운 모델을 개발하고 검증한 것입니다. 주요 방법론적 특징은 다음과 같습니다:데이터 통합:유전자 변이 데이터유전자 발현 데이터대규모 약..

카테고리 없음 2024.09.22

AI의 의학도전: AI를 이용한 의사결정시스템 (2)-다발성 골수종

1차 원고 작성: 2024-09-22 오늘은 "Joint AI-driven event prediction and longitudinal modeling in newly diagnosed and relapsed multiple myeloma"라는 논문을 소개하고자 합니다. 이 연구는 다발성 골수종 환자의 치료 과정을 종합적으로 모델링하는 새로운 AI 기반 접근법을 제시합니다. 출처: npj Digital Medicine (2024). https://doi.org/10.1038/s41746-024-00200-1 다발성 골수종은 두 번째로 흔한 혈액암으로, 매년 전 세계적으로 약 20,000건의 새로운 사례가 발생합니다. 이 질병의 임상 관리는 복잡하며, 환자의 생존을 최대화하고 질병 진행을 지연시키는 동시에..

카테고리 없음 2024.09.22

AI의 의학 도전: RAG 모델로 생물의학 질문에 답하다(4)-pathology

1차 원고 작성: 2024-09-18 오늘은 "ChatGPT for digital pathology research"라는 논문을 정리하고자 합니다. 이 연구는 디지털 병리학 분야에서 **대규모 언어 모델(LLM)**을 활용하는 것의 가능성과 도전 과제를 다룬 리뷰 문헌입니다. 출처: Lancet Digital Health (2024). https://doi.org/10.1016/S2589-7500(24)00114-6 생성형 인공지능 모델, 특히 ChatGPT와 같은 LLM의 빠른 발전은 의료 연구에서 새로운 가능성을 열고 있습니다. 디지털 병리학은 복잡한 맥락적 이해를 요구하는 급변하는 분야로, LLM의 적용이 주목받고 있습니다. 그러나 이 연구는 제한된 도메인 특화 효율성을 가진 LLM의 한계를 지적하..

AI 아이디어 도구: Napkin.ai 소개

AI 아이디어 도구: Napkin.ai 소개Napkin.ai는 창의적인 아이디어를 효율적으로 발전시키고, 정리하고, 시각화할 수 있도록 도와주는 AI 기반 아이디어 관리 도구입니다. 이 플랫폼은 간단한 메모부터 복잡한 개념까지 모든 것을 기록하고, 이를 AI의 도움으로 체계적으로 관리할 수 있도록 설계되었습니다. 특히, 아이디어의 흐름을 시각적으로 정리하고 확장할 수 있는 기능을 제공하여 브레인스토밍을 할 때 유용합니다. https://www.napkin.ai/ Napkin AI - The visual AI for business storytellingJust type, copy-paste or generate your text and Napkin will instantly transform it int..