llm 22

AI의 의학 도전 (6) : LLM의 임상 의사결정 한계 극복 - 안전한 의료 AI 개발을 위한 새로운 프레임워크

1차 원고 작성: 2024-10-17 오늘은 "Evaluation and mitigation of the limitations of large language models in clinical decision-making"이라는 논문에 대해 내용을 정리하고자 합니다. 이 연구는 대규모 언어 모델(LLM)을 임상 의사 결정에 활용할 때의 한계점을 평가하고 개선 방안을 모색한 중요한 논문입니다. 출처: Nature Medicine (2024) 30: 2613–2622. https://doi.org/10.1038/s41591-024-02780-7 대규모 언어 모델(LLM)은 의료 면허 시험에서 우수한 성과를 보이며 임상 의사 결정 분야에서 큰 잠재력을 보여주고 있습니다. 그러나 실제 임상 환경에서 필요한 많은..

카테고리 없음 2024.10.17

AI의 의학 혁신: LLM으로 전방위 예측에 도전하다(1) - NYUTron

1차 원고 작성: 2024-10-17 오늘은 "Health system-scale language models are all-purpose prediction engines"라는 논문에 대해 내용을 정리하고자 합니다. 이 연구는 대규모 언어 모델(LLM)을 활용하여 의료 시스템 전반에 걸친 예측 엔진으로서의 잠재력을 탐구한 중요한 논문입니다. 출처: Nature (2023) 619, 357–362. https://doi.org/10.1038/s41586-023-06160-y  의사들은 매일 시간에 쫓기는 중요한 결정을 내려야 합니다. 임상 예측 모델은 의사와 관리자들이 임상 및 운영 이벤트를 예측하여 결정을 내리는 데 도움을 줄 수 있습니다. 그러나 기존의 구조화된 데이터 기반 임상 예측 모델은 데이터 ..

카테고리 없음 2024.10.17

AI의 의학도전: AI를 이용한 의사결정시스템 (2)-다발성 골수종

1차 원고 작성: 2024-09-22 오늘은 "Joint AI-driven event prediction and longitudinal modeling in newly diagnosed and relapsed multiple myeloma"라는 논문을 소개하고자 합니다. 이 연구는 다발성 골수종 환자의 치료 과정을 종합적으로 모델링하는 새로운 AI 기반 접근법을 제시합니다. 출처: npj Digital Medicine (2024). https://doi.org/10.1038/s41746-024-00200-1 다발성 골수종은 두 번째로 흔한 혈액암으로, 매년 전 세계적으로 약 20,000건의 새로운 사례가 발생합니다. 이 질병의 임상 관리는 복잡하며, 환자의 생존을 최대화하고 질병 진행을 지연시키는 동시에..

카테고리 없음 2024.09.22

AI의 의학 도전: AI를 이용한 의사결정시스템(1) - 맞춤 약물 조정

1차 원고 작성: 2024-09-22 오늘은 "Personalized dose selection for the first Waldenström macroglobulinemia patient on the PRECISE CURATE.AI trial"이라는 논문을 정리하고자 합니다. 이 연구는 희귀질환인 발덴스트롬 대구단백혈증(WM) 환자에게 인공지능(AI) 기반 임상 의사결정 지원 시스템을 적용한 사례 연구입니다. 출처: npj Digital Medicine (2024). https://doi.org/10.1038/s41746-024-01373-9  이 연구는 CURATE.AI라는 AI 기반 플랫폼을 사용하여 WM 환자의 개인화된 약물 투여 용량을 결정하는 과정을 보여줍니다. 특히 희귀질환에서 제한된 데이터..

AI의 의학 도전: RAG 모델로 생물의학 질문에 답하다(4)-pathology

1차 원고 작성: 2024-09-18 오늘은 "ChatGPT for digital pathology research"라는 논문을 정리하고자 합니다. 이 연구는 디지털 병리학 분야에서 **대규모 언어 모델(LLM)**을 활용하는 것의 가능성과 도전 과제를 다룬 리뷰 문헌입니다. 출처: Lancet Digital Health (2024). https://doi.org/10.1016/S2589-7500(24)00114-6 생성형 인공지능 모델, 특히 ChatGPT와 같은 LLM의 빠른 발전은 의료 연구에서 새로운 가능성을 열고 있습니다. 디지털 병리학은 복잡한 맥락적 이해를 요구하는 급변하는 분야로, LLM의 적용이 주목받고 있습니다. 그러나 이 연구는 제한된 도메인 특화 효율성을 가진 LLM의 한계를 지적하..

AI 아이디어 도구: Napkin.ai 소개

AI 아이디어 도구: Napkin.ai 소개Napkin.ai는 창의적인 아이디어를 효율적으로 발전시키고, 정리하고, 시각화할 수 있도록 도와주는 AI 기반 아이디어 관리 도구입니다. 이 플랫폼은 간단한 메모부터 복잡한 개념까지 모든 것을 기록하고, 이를 AI의 도움으로 체계적으로 관리할 수 있도록 설계되었습니다. 특히, 아이디어의 흐름을 시각적으로 정리하고 확장할 수 있는 기능을 제공하여 브레인스토밍을 할 때 유용합니다. https://www.napkin.ai/ Napkin AI - The visual AI for business storytellingJust type, copy-paste or generate your text and Napkin will instantly transform it int..

AI의 의학 도전: RAG 모델로 생물의학 질문에 답하다 (1)-혈액학

1차 원고 작성: 2024-08-24 오늘은 "Improving accuracy of GPT-3/4 results on biomedical data using a retrieval-augmented language model"이라는 논문에 대해 내용을 정리하고자 합니다. 이 연구는 대규모 언어 모델(LLM)을 활용하여 생물의학 분야의 질문에 더 정확하게 답변할 수 있는 방법을 탐구한 중요한 논문입니다. 출처: PLOS Digital Health (2024) 3(8): e0000568. https://doi.org/10.1371/journal.pdig.0000568 대규모 언어 모델(LLM)은 일반적인 인공지능 분야에서 큰 영향을 미치고 있지만, 특정 주제 영역에 대해 때때로 오해의 소지가 있는 결과를 생..

AI와 함께하는 지식 큐레이션 혁신: STORM 시스템의 탐구

오늘은 "STORM: Synthesis of Topic Outlines through Retrieval and Multi-perspective Question Asking"에 대해 내용을 정리하고자 합니다. 이 연구는 대규모 언어 모델(LLM)을 활용하여 인터넷 검색을 기반으로 위키피디아 스타일의 기사를 자동으로 작성하는 혁신적인 시스템을 소개합니다. 출처: https://github.com/stanford-oval/storm.git GitHub - stanford-oval/storm: An LLM-powered knowledge curation system that researches a topic and generates a full-length reporAn LLM-powered knowledge ..

텍스트 분할 전략의 마스터플랜: RAG-LLM의 진정한 잠재력을 깨우다

왜 내가 업로드한 pdf 문서에서 원하는 답이 잘 추출되지 않을까? 정확하게 추출하려면 어떻게 해야할까? RAG-LLM (Retrieval-Augmented Generation for Language Models) 모델을 사용하여 데이터에서 원하는 답을 얻는 과정의 아키텍쳐에는 지식에 해당하는 문서를 사전에 vector database에 임베딩을 해두어야한다. 하지만 효율적인 retrieval을 위해서는 임베딩전 문서를 여러 조각 (chunk) 으로 나누는 텍스트 splitting을 시행하게된다. 정확한 지식기반 LLM을 위해서는 텍스트 splitting 전략 또한 매우 중요하다. 텍스트를 얼마만한 조각으로 나눌지 (chunk size), 조각끼리 얼마나 겹치게 할지 (chunk overlap), 문서의..

나만의 데이터로 GPT 활용-local LLM 구축 도전기 (3): LocalGPT

이번에는 좀더 기대되었던 'LocalGPT'에 대해 설치과정과 간단 사용경험을 공유하고자 합니다 지난번은 UI가 그래도 chatGPT처럼 친숙한 환경을 제공하였던 'Ollama' 라는 local LLM 구축경험을 공유였었죠 https://medtalk.tistory.com/entry/나만의-데이터로-GPT-활용-local-LLM-구축-도전기-2-Ollama-LLaMa 나만의 데이터로 GPT 활용-local LLM 구축 도전기 (2): Ollama-LLaMa지난 번 글에서는 LangChain기반 AI 모델 구축의 일반적인 내용을 담았고 이번에는 실제 구축한 LLM 모델에 대해 설명하고자 한다. 이로서 인터넷 서버를 통하지 않고 local computer인 내 노트북, 내 데medtalk.tistory.co..